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Abstract

A mathematical model describing growth of an internal vapor bubble produced by homogeneous
nucleation within a liquid droplet during explosive boiling is presented. Existing experimental results for
explosive boiling of superheated droplets con®rm the predictions of the model. The di�erence between
the present model and the classical theories of bubble growth is discussed. # 1999 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Explosive boiling is a process of rapid phase transition from liquid to vapor which occurs
when the liquid is highly superheated (Avedisian, 1985; Reid, 1983; Shepherd and Sturtevant,
1982). The liquid can be heated far beyond its boiling point in the absence of external
nucleation sites. Homogeneous nucleation within the bulk of the liquid begins when the liquid
temperature reaches the so-called superheat limit (Avedisian, 1985; Skripov, 1974), which is
close to the critical temperature.

An excellent review of this phenomenon was written by Avedisian (1985). As Avedisian
points out, explosive boiling has been observed during spillage of lique®ed natural gases on
water, preparation and burning of certain alternative fuels, melt-down of nuclear reactor fuel
rods in simulated nuclear reactor accidents, mixing of water and molten metal during casting
and dissolving of molten salt in water during paper pulping operations. Explosive boiling has
also basic theoretical interest, being a fundamental problem in bubble dynamics and boiling
heat transfer. It can be initiated experimentally also by laser heating (Chitavnis, 1987), and
rapid decompression (Miller, 1985).
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There exist several experimental studies of vapor bubble growth during explosive boiling
(Chitavnis, 1987; Shepherd and Sturtevant, 1982; Avedisian and Glassman, 1981; Avedisian,
1982; Frost and Sturtevant, 1986; Frost, 1988; Miller, 1985). Most of the investigators
photographed droplets exploding in a bubble column apparatus to see the explosion evolving.
These studies clari®ed many important features of the process, but not much quantitative
information was obtained. Only Shepherd and Sturtevant (1982) obtained a quantitative
estimation of vapor bubble growth and evaporation rate during explosive boiling.
These experiments reveal the following properties of explosive boiling at standard pressures:

1. Only one bubble is formed inside the droplet (Avedisian,1982, 1985; Shepherd and
Sturtevant, 1982; Avedisian and Glassman, 1981; Frost and Sturtevant, 1986; Frost, 1988).

2. The bubble radius grows with constant speed which is much smaller than the speed of sound
(the value obtained in Shepherd and Sturtevant (1982) is 14.3 m/s).

3. The evaporation rate remains approximately constant during the process (Avedisian, 1985;
Shepherd and Sturtevant, 1982).

4. The process takes 100±200 ms (Avedisian, 1982, 1985; Shepherd and Sturtevant, 1982;
Avedisian and Glassman, 1981; Frost and Sturtevant, 1986; Frost, 1988).

5. The temperature of the vapor at the bubble surface is equal to the boiling point of the
droplet liquid (Avedisian, 1985, p. 154).

6. The classical theory of bubble growth (Plesset and Prosperetti, 1977; Prosperetti and Plesset,
1978) does not describe explosive boiling (Avedisian, 1985; Shepherd and Sturtevant, 1982).

Little has been done to develop a theory of bubble growth during explosive boiling of a liquid
droplet (see Avedisian, 1985, p. 132). Ledder (1990) considered a problem of heat transfer
during bubble growth under high superheating, and Nguyen et al. (1988) modeled the bubble
growth at the superheat limit by postulating that the interfacial liquid velocity is related to the
degree of superheating.
Here, we present a model that reproduces internal bubble growth data in drops during

explosive boiling.

2. Statement of the problem

Take a spherical liquid droplet of initial radius R0 which is situated in another ¯uid. Energy
added to the droplet raises its temperature. At time zero the droplet temperature reaches the
superheat limit. Explosive boiling is initiated, with homogeneous nucleation forming voids
which merge resulting in growth of a bubble inside the droplet as obtained in laser heating and
rapid decompression. We study the bubble growth during this process.
The general physical situation is depicted schematically in Fig. 1. We choose a spherical

coordinate system with its origin at the center of the droplet. Let R1(t ), R2(t ) be the bubble
and droplet radii, respectively (see Fig. 1). Our aim is to calculate R1, R2 as a function of time.
The assumptions we make are based on the experimental observation of explosive boiling of

liquid droplets cited in the Introduction. They are:

1. Both liquids are inviscid and incompressible and the vapor is an ideal gas.
2. The pressure within the vapor bubble is uniform (but can change in time).
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3. The evaporation rate is constant and equal to its maximal possible value, which is the

kinetic theory limit to the mass ¯ux that can be attained in a phase-change process.

4. The ¯ow, bubble and droplet are radially symmetric and the bubble is formed at the center

of the droplet.

In the present radially symmetric con®guration, the viscous shear e�ects vanish. However, in

preparation for further non-concentric cases (see also Appendix A), we analyzed the possibility

of viscous interactions arising. Experiments (Shepherd and Sturtevant, 1982), indicate that the

process of explosive boiling takes less than 200 ms for droplets of 5 � 10ÿ4 m initial radius.

During this period, vorticity, which di�uses at the rate �p nt� (Batchelor, 1967, p. 279) can

penetrate to less than 5 mm, i.e. two orders of magnitude less than the initial radius. As a

result, one can assume that the ¯uids are inviscid.

Also, the bubble growth and ¯uid velocity are much smaller than the speed of sound and

hence both ¯uids can be considered incompressible. Finally, the ideal gas equation of state is a

good description of vapor behavior.

Assumption 2 is based on the analysis of the dynamics of spherical bubbles (Prosperetti et

al., 1988) which showed that the pressure distribution in the bubble can be considered uniform.

Assumption 3 is our main hypothesis. It allows possible non-equilibrium e�ects during rapid

evaporation taking place at the bubble surface to be accounted for. The experimental data

cited previously show that the evaporation rate is very high, and approximately constant. In

principle the evaporation rate can be obtained from kinetic theory (Ytrehus and Ostmo, 1996),

but because such a calculation would require a value of the accommodation coe�cient, which

Fig. 1. Schematic illustration of explosive boiling of a liquid droplet.
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is generally not known, we propose our model. This is the kinetic theory limitation for the
mass ¯ux through the bubble surface (Van Carey, 1992, Chap. 4). The evaporation rate is thus
given by the Hertz±Knudsen formula (Van Carey, 1992, p. 114)

J � ps

�����������������
M

2pRTs �y

s
�1�

Here J is the evaporation rate, Ts is the boiling temperature for the droplet liquid, ps is the
saturation pressure at this temperature, M is the molar mass of the vapor and R is the
universal gas constant.
It should be stressed that we use the boiling temperature of the liquid in the Hertz±Knudsen

formula, and not the temperature of the overheated liquid, following Avedisian (1985, p. 154).
Assumption 4 has been used in previous studies of explosive boiling (Ledder, 1990; Nguyen

et al., 1988). It was shown to be a good approximation for explosive boiling of laser heated
droplets (Chitavnis, 1987). One can show (see Appendix A) that this approximation is
reasonable if the deviation from concentricity does not exceed 25%.
Before we proceed it is important to emphasize the di�erence between the present analysis

and the classical theories of bubble growth. The theory of inertial growth (Rayleigh, 1917)
assumes constant pressure inside the bubble. This assumption is incorrect at the ®rst stages of
explosive boiling, as we shall see later. On the other hand, the theory of Plesset and Prosperetti
(Plesset and Prosperetti, 1977; Prosperetti and Plesset, 1978) stipulates that the pressure
inside the bubble be equal to the saturated vapor pressure neglecting possible non-equilibrium
e�ects.

3. Theoretical model

For spherically symmetric ¯ow the radial component of velocity vr is de®ned by conservation
of mass

vr � R2
1

r2
vrjR1�0 �2�

From conservation of mass at the bubble surface one obtains

vrjR1�0 � _R1 ÿ J

r
�3�

vrjR1ÿ0 � _R1 ÿ J

rG

�4�

while conservation of momentum results in
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pjR2ÿ0 ÿ pjR1�0 � pjR2�0 ÿ pi � 2s1
R1
� 2s2

R2
� J 2

�
1

r
ÿ 1

rG

�
�5�

Here p is the pressure in the liquid phase, pi is the pressure inside the growing bubble, r is the
density of the droplet, rG is the density of the vapor in the bubble, s1 and s2 are surface
tension coe�cients at these surfaces, respectively, and dots denote time derivatives. Eq. (5)
shows that momentum ¯ux follows from pressure di�erence and surface tension force.
Proceeding in the accepted manner in the theory of bubble growth (Avedisian, 1985;

Prosperetti and Plesset, 1978) we obtain the following equation for the bubble radius R1:�
R1

�R1 � 2 _R
2

1 ÿ 2 _R1
J

r

�"
1ÿ R1

R2

�
1ÿ r1

r

�#
� 1

2

 
_R
2

1 ÿ 2 _R1
J

r
� J 2

r2

!
"
R4

1

R4
2

�
1ÿ r1

r

�
ÿ 1

#
ÿ J 2

rGr
� J 2

r2
� 1

r

�
pi ÿ p1 ÿ 2s1

R1
ÿ 2s2

R2

� �6�

Here r1 is the density of the continuous (external) medium and p1 is the pressure far from the
droplet.
Substituting Eq. (3) in Eq. (2) and calculating the liquid velocity at the droplet surface we

obtain, for the droplet radius

_R2 �
�

_R1 ÿ J

r

�
R2

1

R2
2

�7�

From Eq. (4) the vapor density inside the bubble is

rG �
J

_R1 ÿ vrjR1ÿ0
�8�

Utilizing the model of Prosperetti et al. (1988) one can write

rG �
J

_R1 � 1

3

R1

g
_pi

pi

�9�

where g is the ratio of speci®c heats for the vapor.
For the experiment of Shepherd and Sturtevant (1982) we obtain _R1 1 15 m/s. On the other

hand, the second term in the denominator does not exceed 0.6±0.7 m/s and therefore can be
neglected. Then

rG �
J

_R1

�10�

Finally the pressure inside the bubble is

M. Shusser, D. Weihs / International Journal of Multiphase Flow 25 (1999) 1561±1573 1565



pi � rG

R

M
Ts �11�

and the evaporation rate J is given by Eq. (1).

4. Results

For veri®cation of the model we made calculations for explosive boiling of a butane droplet
immersed in ethylene glycol comparing them with experiments by Shepherd and Sturtevant
(1982).
These results were the only full and accurate data we could ®nd in the literature. The

internal bubble is not centered in these runs but, as shown in Appendix A, this does not
qualitatively change the analysis.
Fig. 2 shows the bubble radius R1 as a function of time for our model (1), in comparison

with the experiment (Shepherd and Sturtevant, 1982) (crosses) and the calculations based on
the classical theory of bubble growth (Plesset and Prosperetti, 1977; Prosperetti and Plesset,
1978) (2), and Rayleigh's theory of inertial bubble growth (Rayleigh, 1917) (3). Both of the
latter calculations were taken from Shepherd and Sturtevant (1982). The linear regression of
the experimental data is also shown (4).
We see from Fig. 2 that during the ®rst one-third of the process there is full agreement

between the experiment and the predictions of our model and that even at the late stages, the
di�erence between the theory and the experiment is always less than 10%. This is far better
than predictions of previous theories.
To estimate the in¯uence of material properties on explosive boiling we made calculations

for a few qualitative experiments although it is not possible to make direct comparisons
between the bubble sizes in the calculation and the experiment due to insu�cient experimental
data. The experiments that were chosen are the boiling of a water droplet in decane (Avedisian
and Glassman, 1981), of a pentane droplet in glycerol (Frost, 1988; Frost and Sturtevant,
1986) and of a diethyl ether droplet in glycerol (Frost, 1988; Frost and Sturtevant, 1986).
Fig. 3 shows the calculated bubble radius versus time dependence for these three cases with

the calculation for the experiment of Shepherd and Sturtevant (1982). One sees that the
dependence is approximately linear in all the cases and the boiling of water is the fastest. The
bubble growth rate obtained in the calculation is 16.3 m/s for butane, 23.2 m/s for water,
17.5 m/s for pentane and 17.2 m/s for diethyl ether.
The dimensionless pressure inside the bubble pi/p1 is shown in Fig. 4. One sees that at the

beginning the pressure increases because the bubble can not expand su�ciently fast to respond
to such a high evaporation rate while during the second part of the process the pressure
remains approximately constant. We can show that the behavior of the pressure depends on
the ratio of the densities of the droplet liquid and the host liquid.
By neglecting the surface tension and the evaporation terms and taking into account that the

bubble growth is approximately linear in time, i.e. �R1 1 0. One can obtain from Eq. (6) an
approximate formula for the bubble pressure
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pi

r
� p1

r
� 3

2
_R
2

1 � _R
2

1

�
1ÿ r1

r

�
y

�
y3

2
ÿ 2

�
�12�

where y=R1/R2.

Fig. 2. Bubble radius as a function of time: (+) experiment (Shepherd and Sturtevant (1982)); (1) present theory; (2)
classical theory (Shepherd and Sturtevant, 1982); (3) classical inertial growth rate (Shepherd and Sturtevant, 1982);

(4) linear regression of the experimental data.
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Di�erentiating with respect to y one obtains that

d

dy

�
pi

r

�
> 0 if r1 > r

Fig. 3. Bubble radius as a function of time during explosive boiling: (1) butane droplet in ethylene glycol; (2) water

droplet in decane; (3) pentane droplet on glycerol; (4) diethyl ether droplet in glycerol.
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and vice versa, i.e. the pressure cannot fall if the host liquid has greater density than the
droplet liquid.
One can adopt a similar approach to develop semi-analytical formulae for the bubble growth

rate _R1 and the ®nal value of the bubble pressure pf . Neglecting the above-mentioned terms
and assuming R1 1 R2 and pi 1 pf we obtain an approximate form of Eq. (6) at the ®nal stage

Fig. 4. Bubble pressure as a function of time during explosive boiling: (1) butane droplet in ethylene glycol; (2)

water droplet in decane; (3) pentane droplet in glycerol; (4) diethyl ether droplet in glycerol.
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of the process

3

2
_R
2

1r1 � pf ÿ p1 �13�

or

2

3

pf ÿ p1
R2

1r1
� 1 �14�

The exact calculation from the full Eq. (6) shows that the value for the ratio (14) is 0.92 for
butane, 0.95 for pentane, 0.94 for diethyl ether and 1.29 for water. All these values are close to
one, so that Eq. (13) is a reasonable approximation.
Using Eqs. (10)±(11) and neglecting p1 in Eq. (14) we can write:

_R1 � b0

�
2

3

J

r1

R
M

Ts

�1=3

�15�

where b0 is an empirical coe�cient, independent of material properties.
One sees that the bubble growth rate depends on evaporation rate, the molar mass and the

boiling temperature of the liquid and the density of the host liquid. According to the exact
calculation (Eq. (6)) the value of b0 is 0.96 for butane, 0.87 for water, 0.94 for pentane and
0.93 for diethyl ether. Eq. (15) with b0=1 can therefore be considered a good approximation
for the bubble growth rate, for such, and similar cases.
One may conclude by mentioning that the good agreement between predictions of the model

and the few existing experimental results indicate that the process of explosive boiling is
characterized by bubble formation by homogeneous nucleation and evaporation rate that is
equal to its kinetic theory limit. On the other hand, more data is needed to verify the
assumptions of the model. Therefore further quantitative experimental investigations of
explosive boiling, such as Shepherd and Sturtevant (1982), would be highly desirable.
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Appendix A

The in¯uence of the deviation from concentricity

Explosive boiling etc.
When the bubble is not situated at the center of the droplet, it will not remain spherical

because otherwise the pressure could not be constant on its surface. Moreover, when the
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bubble has grown and reaches the droplet surface the evaporation will be di�erent in di�erent
directions.
To estimate the in¯uence of the deviation from concentricity we assume radial ¯ow and

calculate the error this assumption causes. First we calculate the pressure change on the bubble
surface. Then we shall estimate the time for the bubble to reach the droplet surface.
Take a spherical liquid droplet of initial radius R0. The center of the droplet is on the z-axis

at the distance a from the origin so in spherical coordinates the droplet surface is given by

R2�y,0� � a cos y�
�����������������������������
R2

0 ÿ a2 sin2 y
q

�A1�

At t = 0 a spherical bubble begins to grow at the origin. Assuming a radial ¯ow-®eld, we
obtain, from Eqs. (2) and (3)

vr � R2
1

r2

�
_R1 ÿ J

r

�
�A2�

we can write an equation for the trajectory of a ¯uid particle that at t= 0 was at r=r0 as

dr

dt
� R2

1

r2

�
_R1 ÿ J

r

�
�A3�

or

r3 � r30 � R3
1 ÿ

3J

r

�t
0

R2
1 dt 0 �A4�

Utilizing the fact that the bubble growth is approximately linear in time

R11 _R1t �A5�
one obtains the fact that the form of the droplet during the bubble growth is

R2�y;t� �
�
R3

1

�
1ÿ J

r _R1

�
� �a cos y�

�����������������������������
R2

0 ÿ a2 sin2 y
q

�
�1=3

�A6�

Using the unsteady Bernoulli equation and neglecting RÈ1 we calculate the pressure pb at the
bubble surface

pb ÿ p1 � 3

2
r _R

2

1 � �rÿ r1�
 
R4

1
_R
2

1

2R4
2

ÿ 2 _R
2

1R1

R2

!
� const� �rÿ r1� _R

2

1f�x� �A7�

where

x � R2

R1
; f�x� � 1

2x4
ÿ 2

x
�A8�

From Eqs. (A6) and (A7) one can see that the pressure change at the bubble surface will be
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relatively small because at the beginning R2/R1 is large and hence f (x ) ' is small. Later R0/R1 is
small and therefore the y-dependent term will be small.
To obtain the upper limit for this pressure di�erence we shall calculate it when dpb/dR2 is

maximal, i.e.

Dp �
�

dpb

dR2

�
�Rmax

2 ÿ Rmin
2 � �A9�

where

Rmax
2 � R2�0;t�; Rmin

2 � R2�p;t� �A10�
are the maximal and minimal values of the radial coordinate at the droplet surface

dpb

dR2
� �rÿ r1�

_R
2

1

R1

df

dx
�A11�

and therefore dpb/dR2 is maximal when

d2f

dx2
� 0 �A12�

i.e. when x � �������
2:53
p

.
Taking y=p/2 as a mean value and neglecting the J/rR

.
1 term, which is small, one can write

Eq. (A6) as

R3
2 � R3

1 � �R2
0 ÿ a2�3=2 �A13�

and then approximately when x � �������
2:53
p

R110:87R0 �A14�
Assuming aWR0 we obtain in the linear approximation when x � �������

2:53
p

Rmax
2 ÿ Rmin

2 11:1a �A15�
and therefore

Dp � �rÿ r1� _R
2

1

0:62a

R0
�A16�

The pressure on the bubble surface ( pbÿp1) changes from 3
2rR

. 2
1 at the outset to 3

2r1R
. 2
1 at the

end. Assuming that r, r1 and (rÿr1) are of the same order one sees that

DP
pb ÿ p1

� 0:41a

R0
�A17�

Therefore the error in pressure will be within a 10% range if
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a

R0
R0:25 �A18�

Our analysis remains correct as long as the bubble is wholly inside the droplet. To estimate the
range of its validity one should calculate the time tf when the bubble reaches the droplet
surface.
One can conclude that the assumption of radial ¯ow is reasonable when the deviation from

concentricity does not exceed 25%, as given by Eq. (A18).
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